
JUSTGRID A Pure Java HPCC Grid Architecture
for Multi-Physics Solvers

Performance and efficiency results from various
Java solvers.

Thorsten Ludewig1

University of Applied Sciences Braunschweig/Wolfenbüttel,
Computing Center, Wolfenbüttel, GERMANY

Periklis Papadopoulos2

San Jose State University, San Jose, CA, UNITED STATES

Jochem Häuser3, Torsten Gollnick4 and Wuye Dai5

University of Applied Sciences Braunschweig/Wolfenbüttel
and HPCC-Space GmbH, Salzgitter, GERMANY

Jean-Marie Muylaert6

ESA/ESTEC, Noordwijk, THE NETHERLANDS

and

Hans-Georg Paap7

HPC Consultant Barbing, GERMANY

[Keywords] Hierarchical parallel computer architecture, Java multi-physics HPC, client-
server computation, OOP, Internet-based computing, Internet-based data access, diverse
scientific and engineering disciplines, collaborative engineering, portable HPC and geometry
framework, legacy code integration, architecture independence, HPC without libraries,
complex 3D geometries, just in time solver, Java Performance.

I. Introduction
N [2] the Java Ultra Simulator Technology (JUST8) solver was presented, whose parallel strategy is based on the
Java thread concept. While the thread concept works well with an SMP (Symmetric MultiProcessor) architecture,

it cannot be applied directly to hybrid parallel systems, comprising nodes with distributed memory as well as
multiple processors per node, which are sharing memory. In addition, as was demonstrated using our Java test suite
[2, 6, 7], substantial progress has been made over the last three years concerning Java's numerical performance as
well as parallel efficiency. The test cases from the test suite (e.g. matrix multiplication, Mandelbrot set or a Laplace
solver) were utilized to perform (almost) one-to-one source code comparisons between Java and C++.

I

In this paper we will present results and performance comparisons for CFD (Computational Fluid Dynamics)
and also for MHD (Magneto-Hydro Dynamic) simulations for 1D and complex 2D as well as 3D geometries,

1 Central Systems & IT-Division Head, CSIT, CC, UASW, th@uasw.edu, AIAA Member.
2 Professor, Mechanical & Aerospace Engineering, Perikis.Papadopoulos@sjsu.edu, AIAA Member
3 Director, HPCC-Space GmbH, jh@hpcc-space.de, Senior member AIAA, member SSE.
4 Senior Scientist, HPCC-Space GmbH, tg@hpcc-space.de
5 Senior Scientist, HPCC-Space GmbH, wd@hpcc-space.de
6 Head, Aerodynamics and Aerothermodynamics Section, ESA/ESTEC, jmuylaer@estec.esa.nl
7 Senior HPC Consultant, hgp@hpcc-space.de
8 Name coined by Dr. Jean-Luc Cambier, Senior Research Scientist, AFRL/PRSA, Propulsion Directorate, Edwards
AFB, CA, UNITED STATES

American Institute of Aeronautics and Astronautics

using the two components of JUST, namely JUSTGRID and JUSTSOLVER on several different parallel computer
architectures. First, the goal is to provide guidelines to achieving best efficiency from modern Java virtual machines
(JVM). Second, a strategy will be devised to obtain automatic parallelization on modern hybrid parallel
architectures. Furthermore, the layered software design will be presented in UML (Unified Modeling Language)
format.

During the last three years there has been enormous change in computing and communications hardware. In the
midst of these demands and changes the question arises how to build the simulation software capable of exploiting
the new hardware, dealing with complex three-dimensional geometries, running in parallel, being platform
(architecture) independent, and being able to access geographically distributed computational resources via the
Internet. In addition, the questions of geometric modeling of complex configurations (preprocessing stage) and
visualization of computed results arise (post-processing). Visualization and solution feature extraction along with
data extraction and compression are of prime importance to deliver the relevant information to the design engineer.

To satisfy the above demands along with the additional requirements of code parallelism, code maintainability
and portability, code security, graphics user interfaces (GUI), and data base connectivity to visualize or access data
distributed over different computer architectures connected by the Web, requires a completely new approach. With
procedural programming languages like Fortran or C or even C++, these goals cannot efficiently be achieved.

Attempts have been made to provide such a computational Grid by developing a special computational
infrastructure, providing both services and programming tools. With the advent of the Java language in 1996, a
general sophisticated object-oriented programming tool is available that provides full coverage of all programming
needs on the Internet, and also ensures security. Thus the computational Grid for the Internet can be built entirely in
Java in a transparent, object-based approach, termed JUSTGRID. This includes high-performance (parallel)
computing as well as data intensive computing utilizing the available computing platforms and network
infrastructure.

II. JUSTGRID

JUSTGRID is a completely Java
based software environment for
the user/developer of HPC (High
Performance Computing)
software. JUSTGRID takes care of
the difficult task of handling very
complex geometries (aircraft,
spacecraft, biological cells,
semiconductor devices, turbines,
cars, ships etc.), and the
parallelization of the simulation
code as well as its implementation
on the internet. JUSTGRID builds
the computational Grid, and
provides both the geometry layer
and parallel layer as well as an
interface to attach any arbitrary
solver package to it, even at
runtime.

JUSTSOLVER is a pure Java CFD solver plug-in for JUSTGRID, based on finite volume technique, and thus can be
used for any kind of hyperbolic system of nonlinear partial differential equations formulated in integral form.

III. Results

A.Computational Fluid Dynamics (CFD)
Several simulations were performed to ensure the correct working of the different layers of the JUSTGRID

American Institute of Aeronautics and Astronautics

Illustration 1: JUSTGrid a framework for HPCC in engineering, science
and life sciences.

3D Complex Geometries

Parallelization

Dynamic Load Balancing

Internet

Collaborative
Engineering OutsourcingInteractive

Steering
System
Security

VisualizationSolver

Navier Stokes
(fluid dynamics)

Maxwell
(electromagnetics)

Schrödinger
(quantum mechanics)

Surface
Conversion

Debugging
Session T racking

Results

framework. JUSTGRID is the core of JUST the Java Ultra simulator technology. Hence outmost care was taken to
prove that JUSTGRID works absolutely correct. The solvers implemented in package JUSTSOLVER will test the
JUSTGRID functionality, performance and efficiency. At the present state numerical and physical accuracy of the
scheme and physical validity of the model are of lesser importance. Therefore, in some computations, a Laplace
solver was used for a CFD problem, see below.

1. 3D Cone

Simple 3D cone, 8 blocks, 5,832 grid points,
4,096 cells without halo cells

The cone was selected because it is a well
known test case. It was thus possible to check
nearly the complete functionality of JUSTGRID.

Illustration 2 shows how the JUSTGRID
GRX3D Tool can be used to prepare a simulation
run. JUSTGRID GRX3D is also based on the
JUSTGRID framework and uses the same loaders
and utility classes as JUSTSOLVER to visualize a
grid. It is the very first test to check if JUSTGRID
can handle a given grid. In addition to the
visualization one can specify solver specific
parameters like „max number of iterations”,
„Mach number” or „Dt”. These parameters are not
predefined but depend on the selected solver.

a)JUSTSOLVER Laplace 3D

The Laplace solver uses Dirichlet boundary conditions, that means in this case inflow (v=1) and wall (v=0)
boundaries have fixed values. At the outflow boundary extrapolation is used that means the value will be transported
out of the solution domain.

The following tasks could be verified with this simple test case:

1. Parallelization - JUSTGRID starts one Thread per block and one monitor thread. All available
processors are been used by the simulation. If the computational grid has less blocks than the
compute system's number of processors then the surplus processors will be idle.

2. Synchronization - JUSTGRID implements a loose synchronization between the neighboring blocks.
Therefore it is possible that neighbor blocks are one iteration ahead.

American Institute of Aeronautics and Astronautics

Illustration 2: JUSTGrid GRX3D, simulation preparation
tool, showing the grid of the cone wall and the outflow
face.

Illustration 3: JUSTSolver
Laplace 3D, Cone, showing one
slice on the y-plane.

Illustration 4: JUSTSolver
Laplace 3D, Cone, showing the
outflow boundary.

Illustration 5: JUSTSolver Laplace
3D, Cone, showing block edges with
one deactivated block.

3. Communication - JUSTGRID is also responsible for the boundary update between the neighboring
blocks. One can specify any number of halo cells.

b)JUSTSOLVER Euler3D (1st order, explicit, structured multiblock) compared with CFD++ (2nd order,
unstructured)

To test the numerical correctness of JUSTSOLVER Euler3D the result of the cone simulation is compared with the
result from a commercial CFD solver (CFD++).

Showing the Mach number distribution for a Mach 6.0 simulation after 2000 iterations. While the JUSTSOLVER
Euler3D simulation is only 1st order accurate, compared with the CFD++ result the Mach number distributing
differs not much.

2. European Experimental Test Vehicle (EXTV)

With 780 blocks, 755300 grid points and 538752 cells without halo cells is the EXTV grid a serious test case for
larger simulations. The size of this test case is ideal for efficiency and speedup tests. Because it has a reasonable
number of blocks, and produces enough numerical work load to achieve a homogeneous dynamic load balancing
over all available processors. The simulations were run on a Sun Microsystems Sun Fire V880 server with 8
UltraSPARC III processors (1.2GHz) and 32GByte main memory running Solaris 10 06/06

American Institute of Aeronautics and Astronautics

Illustration 6: JUSTSolver Euler 3D
showing Mach number solution in
symmetry plane.

Illustration 7: CFD++
comparison simulation.

Illustration 8: JUSTSolver Euler
3D with legend and two slices.

Illustration 9: GridPro™ grid,
showing inflow and wall boundaries.

Illustration 10: JUSTGrid GRX3D Tool, showing EXTV
wall boundary.

c)JUSTSOLVER Laplace 3D

The JUSTSOLVER Laplace 3D is again used to test parallelization, synchronization and communication features of
JUSTGRID for these large configurations. In order to produce sufficient numerical load the computation was done
for 2,000 iterations.

The super linear speedup achieved from one to two processors is observed in many different Java programs. This
reflects the behavior of Java's HotSpot compiler. Using only one processor the profiling task of the HotSpot
compiler itself consumes appreciable time to find the program's most time consuming regions (hot spots).

American Institute of Aeronautics and Astronautics

Illustration 11: JUSTSolver
Laplace 3D, EXTV showing
one slice at the y-plane.

Illustration 12:
JUSTSolver Laplace
3D, EXTV 3D view.

Illustration 13: Timings and efficiency results for 1 to 8 processors, running
2,000 iterations with JUSTSOLVER Laplace 3D on a 780 blocks EXTV grid.

1 2 3 4 5 6 7 8

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%3237

1532

1104

850
692

590 521 482

100%
106%

98% 95% 94% 91% 89%
84%

Timings and Efficiency

Time

Efficiency

Number of processors

C
om

p
ut

in
g

 ti
m

e
in

 s
e

co
nd

s

JUSTSOLVER Laplace 3D demonstrates excellent (almost linear) speedup at the hardware configuration utilized.

d)JUSTSOLVER Euler3D

To compare the Java based JUSTSOLVER Euler3D with a flow solver written in 'C' (ParNSS) an EXTV simulation
using a free stream value of Mach 8.0 and an angle of attack 0.0 was chosen.

ParNSS is a legacy 3D structured multiblock code written in 'C'. ParNSS is utilizing the MPI (Message Passing
Interface) library to implement the parallelization and communication between neighboring blocks. The
implemented numerics for the flux computation (van Leer) for ParNSS and JUSTSOLVER Euler3D are almost
identical (99%) at the source code level. Hence, this provides an excellent opportunity to perform reliable
performance comparisons between a 'C' based CFD solver and a Java based flow solver.

American Institute of Aeronautics and Astronautics

Illustration 14: Speedup and efficiency results for 1 to 8 processors, running
2000 iterations with JUSTSOLVER Laplace 3D on a 780 blocks EXTV grid.

1 2 3 4 5 6 7 8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

1.0

2.1

2.9

3.8

4.7

5.5

6.2

6.7

100%
106%

98% 95% 94% 91% 89%
84%

Speedup and Efficiency

Speedup

Efficiency

Number of processors

S
pe

ed
up

Illustration 15: JUSTSolver Euler 3D,
EXTV, Mach number distribution.

Illustration 16: JUSTSolver Euler 3D,
EXTV, Mach number distribution.

Due to the profiling task of the HotSpot compiler the Java solver is much slower with one processor than the 'C'
solver. Employing 5 or more processors JUSTSOLVER Euler3D is faster than ParNSS. For 8 processors the time
difference is already more than 30 seconds for only 200 iterations.

JUSTGRID / JUSTSOLVER Euler3D achieves better linear speedup than ParNSS. In [6] it is shown that Java programs
can achieve linear speedup for numerical applications on large SMP machines with more than 20 processors.

American Institute of Aeronautics and Astronautics

Illustration 17: Computing time an efficiency results for 1 to 8 processors,
running 200 iterations with JUSTSolver Euler 3D and ParNSS on a 780 blocks,
755,300 grid points, 538,752 cells EXTV grid.

1 2 3 4 5 6 7 8

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

ParNSS (C) vs. JUSTGrid (Java) - Computing time

Time (ParNSS)

Efficiency (ParNSS)

Time (JUSTGrid)
Efficiency (JUSTGrid)

Number of processors

C
om

p
ut

e
tim

e
 in

 s
ec

on
ds

Illustration 18: Speedup results for 1 to 8 processors, running 200 iterations with
JUSTSolver Euler 3D and ParNSS on a 780 blocks, 755,300 grid points, 538,752
cells EXTV grid.

1 2 3 4 5 6 7 8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

ParNSS (C) vs. JUSTGrid (Java) - Speedup

Speedup (ParNSS)

Speedup (JUSTGrid)

Number of processors

S
pe

ed
up

B. Performance progress of the Java Virtual Machine
In order to demonstrate the performance progress three different versions of the JVM are compared in Tables 1 and
2 for two different hardware systems. Running 100 iterations on a 780 blocks EXTV grid using JUSTSOLVER Euler
3D to demonstrate the performance progress of the Java Virtual Machine (JVM) on different architectures.

a)SPARC processor architecture

On the SPARC architecture the 64 Bit version of the JVM produces the best performance progress. The 1.6.0
version of the JVM just has been released, and next sub-releases definitely will be faster. This behavior was
observed in all former „first customer shipment” (FCS) JVM releases (e.g. 1.4.0_fcs, 1.5.0_fcs).

b)AMD Opteron processor architecture

The highest performance boost was achieved from JVM 1.4 to JVM 1.5. Similar to the SPARC architecture, the
JVM 1.6.0 (FCS) is slightly slower than the actual JVM 1.5. But the JVM 1.6 is about 20% faster during the loading
and writing of a grid.

American Institute of Aeronautics and Astronautics

Table 1: JVM performance progress on a Sun Microsystems V880
with 8 processors (UltraSPARC III, 1.2GHz), 32 GB main memory
running Solaris 10 06/06. Execution times are in seconds.

JVM Version 32 Bit 64 Bit
1.4.0_12 server 172.57 332.83
1.5.0_10 server 136.68 203.12

137.92 159.341.6.0_fcs server

Table 2: JVM performance progress on a Sun Microsystems U40
with 2 Dual Core processors (AMD Opteron 280), 8 GB main
memory running Solaris 10 06/06.

JVM Version 32 Bit 64 Bit
1.4.0_12 server 793.21
1.5.0_10 client 211.12
1.5.0_10 server 116.25 155.24
1.6.0_fcs server 126.31 156.26

C. Magneto Hydro Dynamic (MHD)

1. Brio-Wu's Shock-Tube

The solution was computed up to time t = 0.25s,
because the numerical solution has reached the
end of the computational domain.
Computational results show excellent agreement
with the original results. This shows that the
physics and numerics are implemented
correctly.

2. 2D Riemann-MHD

The density distribution obtained for a Riemann-
MHD computation is shown in Illustration 20.
The solution domain is given by a rectangle
[-0.3,0.3;-0.3,0.3]. The initial conditions are

initial data (B0=
1

 2
1, 0,0T)

ρ0(x,y) ux uy p0(x,y)

x<0, y<0 10 0 0 15

otherwise 1 0 0 0.5

The original experiment can be found in M. Torrilhon, Zur
Numerik der idealen Magnetohydrodynamik, ETH Thesis
Nr. 15353, Eidgenössische Technische Hochschule,
Seminar für angewandte Mathematik (2003,Nov.), pp. 150-
154.

3. JUSTGRID's GRXMonoblock Tool

Illustration 21 shows the online visualization
feature of JUSTGRID's GRXMonoblock Tool. It
gives a good impression about the current state
of the simulation. Clearly, it is not meant to be a
replacement for visualization tools like
TecPlot™ or Ensight™. Another useful feature
of JUSTGRID's GRXMonoblock Tool is the
QuickTime™ movie generation during the
simulation.

American Institute of Aeronautics and Astronautics

Illustration 19: 1D MHD solution, rho (density) distribution
for well known Brio & Wu shock tube.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Rho distribution, Brio & Wu shock tube

X from -1.0 to +1.0

R
H

O

Illustration 21: JUSTGrid GRXMonoblock Tool GUI,
showing online visualization while the 2D MHD Riemann
solver is running.

Illustration 20: 2D MHD solution, rho (density)
distribution for a Riemann solver.

IV. Acknowledgements
The work presented here is part of the Ph.D. thesis of the first author submitted to Greenwich
University, London, U.K.

This work was partly funded by Arbeitsgruppe Innovative Projekte (AGIP) and EFRE, Ministry of
Science and Culture (MWK), Hannover, Germany.

This research was also partly performed by the Air Force Office of Scientific Research (London,
U,K.), Air Force Material Command, USAF under grant number FA8655-07-1-3027. We are grateful
to Dr. Jean-Luc Cambier, Propulsion Directorate, Edwards Air Force, Base for numerous helpful
comments concerning the MHD calculations.

A major part of this work was performed under ESA's Let-SME program, contract number NL 18732.

The Government of Lower Saxony, Germany, the European Commission, the European Space
Agency, and the U.S. Government are authorized to reproduce and distribute reprints for
Governmental purpose notwithstanding any copyright notation thereon.

The authors are grateful to Profs. Mark Cross and Mayur Patel, University of Greenwich, London,
U.K. for many stimulating discussions.

V. References

[1] Ludewig, T., Häuser, J., Gollnick, T., Paap, H.G.: A Java Based High Performance Solver for Hierarchical Parallel
Computer Architectures. 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2005-1383 Reno, NV, USA, 10-13
January 2005.

[2] Ludewig, T., Häuser, J., Gollnick, T., Paap, H.G.: JUSTGrid A Pure Java HPCC Grid Architecture for Multi-Physics
Solvers Using Complex Geometries. 42th AIAA Aerospace Sciences Meeting and Exhibit, AIAA-2004-1091 Reno, NV,
USA, 5-8 January 2004.

[3] Fatica, M., Jameson, A., Alonso, J., J.: StreamFLO: an Euler solver for streaming architectures. 42th AIAA Aerospace
Sciences Meeting and Exhibit, AIAA-2004-1090 Reno, NV, USA, 5-8 January 2004.

[4] Science and technology Shaping the Twenty-First Century, Executive Office of the President, Office of Science and
technology Policy, 1997.

[5] Häuser, J., Ludewig, T., Gollnick, T., Williams, R.D.: An innovative Software for HPCC., ECCOMAS 2001,
Computational Fluid Dynamics Conference, Swansea, September 2001, UK

[6] Häuser, J., Ludewig, T., Williams, R.D., Winkelmann R., Gollnick T., Brunett S., Muylaert J.: A Test Suite for High-
Performance Parallel Java, Advances in Engineering Software, 31 (2000), 687-696, Elsevier.

[7] Ginsberg, M., Häuser, J., Moreira, J.E., Morgan, R., Parsons, J.C., Wielenga, T.J. .: Future Directions and Challenges for
Java Implementations of Numeric-Intensive Industrial Applications, 31 (2000), 743-751, Elsevier.

[8] Moreira, J.E., S. P. Midkiff, M. Gupta, From Flop to Megaflop: Java for Technical Computing, IBM Research Report RC
21166.

[9] Moreira, J.E., S. P. Midkiff, M. Gupta, A Comparison of Java, C/C++, and Fortran for Numerical Computing, IBM
Research Report RC 21255.

[10] Häuser J., Williams R.D, Spel M., Muylaert J., ParNSS: An Efficient Parallel Navier-Stokes Solver for Complex
Geometries, AIAA 94-2263, AIAA 25th Fluid Dynamics Conference, Colorado Springs, June 1994.

[11] Häuser, J., Xia, Y., Muylaert, J., Spel, M., Structured Surface Definition and Grid Generation for Complex Aerospace
Configurations, In: Proceedings of the 13th AIAA Computational Fluid Dynamics Conference -Open Forum, June 29 - July
2, 1997, Part 2, pp. 836-837, ISBN 1-56347-233-3.

[12] Häuser, J., Ludewig, T., Gollnick, T., Winkelmann, R., Williams, R., D., Muylaert, J., Spel, M., A Pure Java Parallel Flow
Solver, 37th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 99-0549 Reno, NV, USA, 11-14 January 1999.

[13] Winkelmann, R., Häuser J., Williams R.D, Strategies for Parallel and Numerical Scalability of CFD Codes, Comp. Meth.
Appl. Mech. Engng., NH-Elsevier, 174, 433-456,1999.

American Institute of Aeronautics and Astronautics

	A.Computational Fluid Dynamics (CFD)
	a)JUSTSolver Laplace 3D
	b)JUSTSolver Euler3D (1st order, explicit, structured multiblock) compared with CFD++ (2nd order, unstructured)
	c)JUSTSolver Laplace 3D
	d)JUSTSolver Euler3D

	B. Performance progress of the Java Virtual Machine
	a)SPARC processor architecture
	b)AMD Opteron processor architecture

	C. Magneto Hydro Dynamic (MHD)

