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I. Introduction
N [2] the Java Ultra Simulator Technology (JUST8) solver was presented, whose parallel strategy is based on the 
Java thread concept. While the thread concept works well with an SMP (Symmetric MultiProcessor) architecture, 

it  cannot  be  applied directly  to  hybrid  parallel  systems,  comprising nodes  with  distributed  memory as  well  as 
multiple processors per node, which are sharing memory. In addition, as was demonstrated using our Java test suite 
[2, 6, 7], substantial progress has been made over the last three years concerning Java's numerical performance as 
well as parallel efficiency. The test cases from the test suite (e.g. matrix multiplication, Mandelbrot set or a Laplace 
solver) were utilized to perform (almost) one-to-one source code comparisons between Java and C++. 

I

In this paper we will present results and performance comparisons for CFD (Computational Fluid Dynamics) 
and also for  MHD (Magneto-Hydro Dynamic) simulations for 1D and complex 2D as well as 3D geometries, 
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using the two components of  JUST,  namely  JUSTGRID and  JUSTSOLVER on several different parallel  computer 
architectures. First, the goal is to provide guidelines to achieving best efficiency from modern Java virtual machines 
(JVM).  Second,  a  strategy  will  be  devised  to  obtain  automatic  parallelization  on  modern  hybrid  parallel 
architectures. Furthermore, the layered software design will be presented in UML (Unified Modeling Language) 
format. 

During the last three years there has been enormous change in computing and communications hardware. In the 
midst of these demands and changes the question arises how to build the simulation software capable of exploiting 
the  new  hardware,  dealing  with  complex  three-dimensional  geometries,  running  in  parallel,  being  platform 
(architecture)  independent,  and being able  to  access  geographically  distributed  computational  resources  via  the 
Internet.  In addition,  the questions of geometric modeling of complex configurations (preprocessing stage)  and 
visualization of computed results arise (post-processing). Visualization and solution feature extraction along with 
data extraction and compression are of prime importance to deliver the relevant information to the design engineer. 

To satisfy the above demands along with the additional requirements of code parallelism, code maintainability 
and portability, code security, graphics user interfaces (GUI), and data base connectivity to visualize or access data 
distributed over different computer architectures connected by the Web, requires a completely new approach. With 
procedural programming languages like Fortran or C or even C++, these goals cannot efficiently be achieved.

Attempts  have  been  made  to  provide  such  a  computational  Grid by  developing  a  special  computational 
infrastructure, providing both services and programming tools. With the advent of the Java language in 1996, a 
general sophisticated object-oriented programming tool is available that provides full coverage of all programming 
needs on the Internet, and also ensures security. Thus the computational Grid for the Internet can be built entirely in 
Java  in  a  transparent,  object-based  approach,  termed  JUSTGRID.  This  includes  high-performance  (parallel) 
computing  as  well  as  data  intensive  computing  utilizing  the  available  computing  platforms  and  network 
infrastructure.

II. JUSTGRID

JUSTGRID is  a  completely  Java 
based  software  environment  for 
the user/developer  of  HPC (High 
Performance  Computing) 
software.  JUSTGRID takes care of 
the difficult task of handling very 
complex  geometries  (aircraft, 
spacecraft,  biological  cells, 
semiconductor  devices,  turbines, 
cars,  ships  etc.),  and  the 
parallelization  of  the  simulation 
code as well as its implementation 
on the internet.  JUSTGRID builds 
the  computational  Grid,  and 
provides  both  the  geometry  layer 
and  parallel  layer  as  well  as  an 
interface  to  attach  any  arbitrary 
solver  package  to  it,  even  at 
runtime.

JUSTSOLVER is a pure Java CFD solver plug-in for JUSTGRID, based on finite volume technique, and thus can be 
used for any kind of hyperbolic system of nonlinear partial differential equations formulated in integral form.

III. Results

A.Computational Fluid Dynamics (CFD)
Several  simulations  were performed to ensure  the correct  working of  the different  layers  of the  JUSTGRID 
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Illustration 1: JUSTGrid a framework for HPCC in engineering, science 
and life sciences.
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framework. JUSTGRID is the core of JUST the Java Ultra simulator technology. Hence outmost care was taken to 
prove that  JUSTGRID works absolutely correct.  The solvers  implemented in  package  JUSTSOLVER will  test  the 
JUSTGRID functionality, performance and efficiency. At the present state numerical and physical accuracy of the 
scheme and physical validity of the model are of lesser importance. Therefore, in some computations, a Laplace 
solver was used for a CFD problem, see below.

1. 3D Cone

Simple 3D cone, 8 blocks, 5,832 grid points, 
4,096 cells without halo cells

The  cone  was  selected  because  it  is  a  well 
known  test  case.  It  was  thus  possible  to  check 
nearly the complete functionality of JUSTGRID.

Illustration  2 shows  how  the  JUSTGRID 
GRX3D Tool can be used to prepare a simulation 
run.  JUSTGRID GRX3D  is  also  based  on  the 
JUSTGRID framework and uses the same loaders 
and utility  classes as  JUSTSOLVER to visualize a 
grid. It is the very first test to check if JUSTGRID  
can  handle  a  given  grid.  In  addition  to  the 
visualization  one  can  specify  solver  specific 
parameters  like  „max  number  of  iterations”, 
„Mach number” or „Dt”. These parameters are not 
predefined but depend on the selected solver.

a)JUSTSOLVER Laplace 3D

The Laplace solver uses Dirichlet boundary conditions, that means in this case inflow (v=1) and wall (v=0) 
boundaries have fixed values. At the outflow boundary extrapolation is used that means the value will be transported 
out of the solution domain.

The following tasks could be verified with this simple test case:

1. Parallelization  -  JUSTGRID starts  one  Thread  per  block  and  one  monitor  thread.  All  available 
processors  are  been used  by  the  simulation.  If  the  computational  grid  has  less  blocks  than  the 
compute system's number of processors then the surplus processors will be idle.

2. Synchronization - JUSTGRID implements a loose synchronization between the neighboring blocks. 
Therefore it is possible that neighbor blocks are one iteration ahead.
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Illustration 2: JUSTGrid GRX3D, simulation preparation 
tool, showing the grid of the cone wall and the outflow 
face.

Illustration 3: JUSTSolver 
Laplace 3D, Cone, showing one 
slice on the y-plane.

Illustration 4: JUSTSolver 
Laplace 3D, Cone, showing the 
outflow boundary.

Illustration 5: JUSTSolver Laplace 
3D, Cone, showing block edges with 
one deactivated block.



3. Communication -  JUSTGRID is also responsible for the boundary update between the neighboring 
blocks. One can specify any number of halo cells.

b)JUSTSOLVER Euler3D  (1st  order,  explicit,  structured  multiblock)  compared  with  CFD++  (2nd  order, 
unstructured)

To test the numerical correctness of  JUSTSOLVER Euler3D the result of the cone simulation is compared with the 
result from a commercial CFD solver (CFD++).

Showing the Mach number distribution for a Mach 6.0 simulation after 2000 iterations. While the  JUSTSOLVER 
Euler3D simulation is  only 1st  order  accurate,  compared with the CFD++ result  the Mach number distributing 
differs not much.

2. European Experimental Test Vehicle (EXTV)

With 780 blocks, 755300 grid points and 538752 cells without halo cells is the EXTV grid a serious test case for 
larger simulations. The size of this test case is ideal for efficiency and speedup tests. Because it has a reasonable 
number of blocks, and produces enough numerical work load to achieve a homogeneous dynamic load balancing 
over  all  available  processors.  The  simulations  were  run  on  a  Sun Microsystems  Sun Fire  V880 server  with  8 
UltraSPARC III processors (1.2GHz) and 32GByte main memory running Solaris 10 06/06
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Illustration 6: JUSTSolver Euler 3D 
showing Mach number solution in 
symmetry plane.

Illustration 7: CFD++ 
comparison simulation.

Illustration 8: JUSTSolver Euler 
3D with legend and two slices.

Illustration 9: GridPro™ grid, 
showing inflow and wall boundaries.

Illustration 10: JUSTGrid GRX3D Tool, showing EXTV 
wall boundary.



c)JUSTSOLVER Laplace 3D

The JUSTSOLVER Laplace 3D is again used to test parallelization, synchronization and communication features of 
JUSTGRID for these large configurations. In order to produce sufficient numerical load the computation was done 
for 2,000 iterations.

The super linear speedup achieved from one to two processors is observed in many different Java programs. This 
reflects  the  behavior  of  Java's  HotSpot  compiler.  Using  only one  processor  the  profiling  task  of  the  HotSpot 
compiler itself consumes appreciable time to find the program's most time consuming regions (hot spots).
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Illustration 11: JUSTSolver 
Laplace 3D, EXTV showing 
one slice at the y-plane.

Illustration 12: 
JUSTSolver Laplace 
3D, EXTV 3D view.

Illustration 13: Timings and efficiency results for 1 to 8 processors, running 
2,000 iterations with JUSTSOLVER Laplace 3D on a 780 blocks EXTV grid.
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JUSTSOLVER Laplace 3D demonstrates excellent (almost linear) speedup at the hardware configuration utilized.

d)JUSTSOLVER Euler3D

To compare the Java based JUSTSOLVER Euler3D with a flow solver written in 'C' (ParNSS) an EXTV simulation 
using a free stream value of Mach 8.0 and an angle of attack 0.0 was chosen.

ParNSS is a legacy 3D structured multiblock code written in 'C'. ParNSS is utilizing the MPI (Message Passing 
Interface)  library  to  implement  the  parallelization  and  communication  between  neighboring  blocks.  The 
implemented  numerics  for  the  flux  computation  (van  Leer)  for  ParNSS  and  JUSTSOLVER Euler3D are  almost 
identical  (99%)  at  the  source  code  level.  Hence,  this  provides  an  excellent  opportunity  to  perform  reliable 
performance comparisons between a 'C' based CFD solver and a Java based flow solver.
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Illustration 14: Speedup and efficiency results for 1 to 8 processors, running 
2000 iterations with JUSTSOLVER Laplace 3D on a 780 blocks EXTV grid.

1 2 3 4 5 6 7 8

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

110%

120%

1.0

2.1

2.9

3.8

4.7

5.5

6.2

6.7

100%
106%

98% 95% 94% 91% 89%
84%

Speedup and Efficiency

Speedup

Efficiency

Number of processors

S
pe

ed
up

Illustration 15: JUSTSolver Euler 3D, 
EXTV, Mach number distribution.

Illustration 16: JUSTSolver Euler 3D, 
EXTV, Mach number distribution.



Due to the profiling task of the HotSpot compiler the Java solver is much slower with one processor than the 'C' 
solver. Employing 5 or more processors  JUSTSOLVER Euler3D is faster than ParNSS. For 8 processors the time 
difference is already more than 30 seconds for only 200 iterations.

JUSTGRID / JUSTSOLVER Euler3D achieves better linear speedup than ParNSS. In [6] it is shown that Java programs 
can achieve linear speedup for numerical applications on large SMP machines with more than 20 processors.
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Illustration 17: Computing time an efficiency results for 1 to 8 processors, 
running 200 iterations with JUSTSolver Euler 3D and ParNSS on a 780 blocks, 
755,300 grid points, 538,752 cells EXTV grid.
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Illustration 18: Speedup results for 1 to 8 processors, running 200 iterations with 
JUSTSolver Euler 3D and ParNSS on a 780 blocks, 755,300 grid points, 538,752 
cells EXTV grid.
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B. Performance progress of the Java Virtual Machine
In order to demonstrate the performance progress three different versions of the JVM are compared in Tables 1 and 
2 for two different hardware systems. Running 100 iterations on a 780 blocks EXTV grid using JUSTSOLVER Euler 
3D to demonstrate the performance progress of the Java Virtual Machine (JVM) on different architectures.

a)SPARC processor architecture

On the SPARC architecture the 64 Bit  version of  the JVM produces the best  performance progress. The 1.6.0 
version  of  the  JVM just  has  been released,  and next  sub-releases  definitely  will  be  faster.  This  behavior  was 
observed in all former „first customer shipment” (FCS) JVM releases (e.g. 1.4.0_fcs, 1.5.0_fcs).

b)AMD Opteron processor architecture

The highest performance boost was achieved from JVM 1.4 to JVM 1.5. Similar to the SPARC architecture, the 
JVM 1.6.0 (FCS) is slightly slower than the actual JVM 1.5. But the JVM 1.6 is about 20% faster during the loading 
and writing of a grid.
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Table 1: JVM performance progress on a Sun Microsystems V880 
with 8 processors (UltraSPARC III, 1.2GHz), 32 GB main memory 
running Solaris 10 06/06. Execution times are in seconds.

JVM Version 32 Bit 64 Bit
1.4.0_12 server 172.57 332.83
1.5.0_10 server 136.68 203.12

137.92 159.341.6.0_fcs server

Table  2: JVM performance progress on a Sun Microsystems U40  
with  2  Dual  Core  processors  (AMD Opteron 280),  8  GB main 
memory running Solaris 10 06/06.

JVM Version 32 Bit 64 Bit
1.4.0_12 server 793.21
1.5.0_10 client 211.12
1.5.0_10 server 116.25 155.24
1.6.0_fcs server 126.31 156.26



C. Magneto Hydro Dynamic (MHD)

1. Brio-Wu's Shock-Tube

The solution was computed up to time t = 0.25s, 
because the numerical solution has reached the 
end  of  the  computational  domain. 
Computational results show excellent agreement 
with  the  original  results.  This  shows  that  the 
physics  and  numerics  are  implemented 
correctly.

2. 2D Riemann-MHD

The density distribution obtained for a Riemann-
MHD computation is  shown in  Illustration  20. 
The  solution  domain  is  given  by  a  rectangle 
[-0.3,0.3;-0.3,0.3].  The initial conditions are 

initial data ( B0=
1

 2
1, 0,0T )

ρ0(x,y) ux uy p0(x,y)

x<0, y<0 10 0 0 15

otherwise 1 0 0 0.5

The original experiment can be found in M. Torrilhon, Zur 
Numerik  der  idealen  Magnetohydrodynamik,  ETH Thesis 
Nr.  15353,  Eidgenössische  Technische  Hochschule, 
Seminar für angewandte Mathematik ( 2003,Nov.), pp. 150-
154. 

3. JUSTGRID's GRXMonoblock Tool

Illustration  21 shows  the  online  visualization 
feature of  JUSTGRID's GRXMonoblock Tool. It 
gives a good impression about the current state 
of the simulation. Clearly, it is not meant to be a 
replacement  for  visualization  tools  like 
TecPlot™ or Ensight™. Another useful feature 
of   JUSTGRID's  GRXMonoblock  Tool  is  the 
QuickTime™ movie  generation  during  the 
simulation.

American Institute of Aeronautics and Astronautics

Illustration 19: 1D MHD solution, rho (density) distribution 
for well known Brio & Wu shock tube.
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Illustration 21: JUSTGrid GRXMonoblock Tool GUI, 
showing online visualization while the 2D MHD Riemann 
solver is running.

Illustration 20: 2D MHD solution, rho (density) 
distribution for a Riemann solver.
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